

Reg.	No):														
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR															
	(AUTONOMOUS)															
	B.Tech III Year I Semester Regular Examinations November/December 2018															
WATER RESOURCES ENGINEERING - I																
						(Civ	il Engi	neerii	ıg)							
Time:	3 hc	ours											Max.	Mark	as: 60	
(Answer all Five Units $5 \times 12 = 60$ Marks)																
							UN	IT-I								
1	a Define Hydrology. Discuss the various practical applications of hydrology.									7M						
	b	Describe the	pri	nciple	of wo	rking o	of a we	ighing	g bucł	cet ty	/pe r	record	ing ra	in gau	ge.	5M
•		Г 1 ¹ 4	C 11		.1	1 6		R	1			C 11		. 1		
2	a	a Explain the following methods of determining the average rainfall over a catchment														
	(i) Isohvetal method										7M					
	b With neat sketches explain the 'mass cause of rainfall' and 'hydrograph'.										5M					
	UNIT-II															
3	a	a What is evaporation? Discuss the factors affecting evaporation 71									7M					
	b What is runoff? List the various climate and physiographic factors affecting runoff									5M						
	OR										-					
4	a Given the ordinates of a 4-h unit hydrograph as below derive the ordinates of a 12-h															
	unit hydrograph for the same catchment.															
		Time (h)	0	4	8	12	16	20	24	1 2	28	32	36	40	44	
		Ordinate	0	20	80	120	150	120			50	27	15	5	0	
		$UH(m^3/s)$	U	20	80	150	150	150			52	21	15	5	0	7M
	b What are the assumptions involve in the unit hydrograph theory? What are the										/ 141					
	limitations of unit hydrograph? 51										5M					
	UNIT-III															
5	a Derive an expression for the steady state discharge of a well in an unconfined															
	aquifer.									7M						
	b Distinguish between (i) specific yield and specific retention and (ii) Transmissibility										5M					
	and storage co-efficient.										2171					

OR

- 6 a During a recuperation test conducted on an open well in a region, the water level in the well was depressed by 3 m and it was observed to rise by 1.75 m in 75 minutes.
 (i) What is the specific yield of open wells in that region? (b) What could be the yield from a well of 5 m diameter under a depression head of 2.5 m? (c) What should be the diameter of the well to give a yield of 12 lit/s under a depression head of 2 m?
 - **b** A well of 0.5 m diameter penetrates fully into a confined aquifer of thickness 20 m and hydraulic conductivity 8.2 x 10⁻⁴ m/s. What is the maximum yield expected from this well if the drawdown in the well is not to exceed 3 m. The radius of influence may be taken as 260 m.

5M

7M

UNIT-IV

- 7 a Discuss in brief the flooding methods of Irrigation.
 - **b** Explain the term 'duty'. How can duty be improved?

OR

a The base period, intensity of irrigation and duty of water for various crops under a 8 canal system are given in the Table below. Determine the reservoir capacity if the culturable commanded area is 40,000 hectares, canal losses are 20% and reservoir losses are 10%.

Crop	Base Period (days)	Duty of water at	Intensity of	
		the field	Irrigation	
		(hectares/m ³ /sec)	(percentage)	
Wheat	120	1800	20	
Sugarcane	360	1700	20	
Cotton	180	1400	10	
Rice	120	800	15	
Vegetables	120	700	15	7M
Define the terms: K	Kor watering, outlet fact	or, capacity factor, ti	me factor and crop	_

b ratio.

UNIT-V

- 9 **a** How are irrigation canals classified? Explain.
 - 7M **b** Derive an expression for the silt transporting capacity of a channel according to Kennedy's theory.

OR

- **10** a Design a channel section for the following data: Discharge $Q = 10 \text{ m}^3/\text{sec}$, silt factor f = 1.0, side slope = $\frac{1}{2}$ (H): 1 (V). Also determine the bed-slope of the channel. 7M
 - **b** Compare Kennedy's and Lacey's theories for the design of irrigation channel in alluvial soil. 5M

*** END ***

- 5M